OXYGENATED CLEROSTEROLS ISOLATED FROM THE MARINE ALGA CODIUM ARABICUM

JYH-HORNG SHEU,* CHIN-CHUANG LIAW, and CHANG-YIH DUH

Department of Marine Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan 804, Republic of China

ABSTRACT.—Clerosterol [1], (24S)-24-ethyl-3-oxocholesta-4,25-dien-6 β -ol [2], (24S)-24-ethyl-5 α -hydroperoxycholesta-6,25-dien-3 β -ol [3], (24S)-24-ethyl-7-oxocholesta-5,25-dien-3 β -ol [4], (24S)-24-ethyl-7 α -hydroperoxycholesta-5,25-dien-3 β -ol [5], and (24S)-24-ethylcholesta-5,25-dien-3 β ,7 α -diol [6], were isolated from the marine green alga *Codium arabicum*. A portion of steroid 5 was epimerized to (24S)-24-ethyl-7 β -hydroperoxycholesta-5,25-dien-3 β -ol [8]. LAH reduction of an inseparable mixture of 5 and 8 yielded diol 6 and (24S)-24-ethylcholesta-5,25-dien-3 β ,7 β -diol [7]. Among these compounds, sterols 2, 3, and 5 were isolated for the first time from a natural source. Metabolites 2–6 showed significant cytotoxicity toward various cancer cell lines.

Marine green algae of the genus *Codium* (Codiaceae) have been found to be an important source of clerosterol [1] (1,2) and its oxygenated derivatives (3). Acyclic diterpenoids also have been isolated from *C. decorticatum* (4). As several reports have revealed that some oxygenated sterols possess interesting biological activities (5–8), and because the organic extract of *Codium arabicum* Kützing exhibited cytotoxicity against KB (human nasopharyngeal carcinoma) and P-388 (mouse lymphocytic leukemia) cells, we initiated a study to investigate the bioactive metabolites of this organism. This is the first report of a chemical investigation of *C. arabicum*. In the present study, we have isolated the known clerosterol [1], (24S)-24-ethyl-7-oxocholesta-5,25-dien-3 β -ol [4] (3), and (24S)-24-ethyl-3-oxocholesta-4,25-dien-6 β -ol [2], (24S)-24-ethyl-5 α -hydroperoxycholesta-6,25-dien-3 β -ol [3], and (24S)-24-ethyl-7 α -hydroperoxycholesta-5,25-dien-3 β -ol [5]. We also report herein the cytotoxicity of these six sterols toward various cancer cell lines.

RESULTS AND DISCUSSION

The organism *C. arabicum*, collected in April 1993, along the coast of Penghu, Taiwan, was freeze-dried and extracted with EtOAc. The crude extract was triturated with hexane to afford a hexane-soluble fraction, and a hexane-insoluble but EtOAcsoluble fraction. Both fractions were shown to exhibit a similar activity against KB cells (ED₅₀ values of 14–20 μ g/ml) and P-388 cells (ED₅₀ values of 5–7 μ g/ml), and various sterols were isolated by Si gel cc of the hexane fraction. The major and least polar sterol obtained was found to be (24*S*)-24-ethylcholesta-5,25-dien-3β-ol (clerosterol) [1], isolated previously from *C. fragile* (1), *C. iyengaii* (2), and *C. decorticatum* (3). The structure of **1** was confirmed by comparison of the mp, [α]D, and spectral data of **1** with those reported previously (1,9). Moreover, by comparison of the physical and spectral data, the acetate of **1** was found to be identical with (24*S*)-24-ethylcholesta-5,25-dien-3β-yl acetate, which has been converted previously into the known (24*S*)-24-ethylcholesta-5-en-3β-yl acetate (1).

The new sterol **2** was isolated from the fraction eluted with hexane-EtOAc (6:1). Its molecular formula, $C_{28}H_{46}O_2$, was established by hrms, and its ir spectrum exhibited a broad OH stretch at 3484 cm⁻¹ and a conjugated carbonyl stretch at 1686 cm⁻¹. Its ¹H-nmr spectrum showed an olefinic proton as a sharp singlet at δ 5.82 (H-4) and a proton geminal with the hydroxyl group as a narrow signal at δ 4.35 (H-6), as well as the olefinic

methylene proton resonances as broad singlets at δ 4.65 and 4.73. A triplet at δ 0.80 (J=7.2 Hz) was due to the 29-methyl group. A doublet at δ 0.91 (J=6.3 Hz) was due to the 21-methyl group. Three singlets of the H₃-18, H₃-19, and H₃-27 methyls appeared at δ 0.73, 1.38, and 1.56, respectively. The ¹³C-nmr spectrum of **2** also showed the presence of 29 carbon signals in the molecule, including one carbonyl carbon (δ 200.36, C-3), four olefinic carbons (δ 111.39, C-26; 126.35, C-4; 147.53, C-25; 168.36, C-5), one oxygen-bearing methine carbon (δ 73.33, C-6), and five methyl carbons (δ 12.05, C-29; 12.51, C-18; 17.80, C-27; 18.61, C-21; 19.51, C-19). On the basis of all the spectral data obtained, and by comparison of these data with those of 3-oxostigmast-4-en-6 β -ol(10), the structure of sterol **2** was established as (24*S*)-24-ethyl-3-oxocholesta-4,25-dien-6 β -ol.

Further elution with hexane-EtOAc (5:1) led to the isolation of sterol 3. Its ir spectrum showed stretching frequencies at 3436 and 3216 cm⁻¹ due to hydroxyl and hydroperoxyl groups, respectively (11). Its ¹H-nmr spectrum showed a broad singlet at δ 7.06 which confirmed the presence of the hydroperoxyl group. The H-6 and H-7 olefinic protons appeared as two double doublets of an AB system at δ 5.60 (J=2.4 and 9.6 Hz) and 5.83 (J=1.8 and 9.6 Hz). The olefinic methylene protons (H₂-26) appeared as broad singlets at δ 4.64 and 4.73. A multiplet at δ 4.12 was due to the H-3 proton. The 29-methyl protons were observed at δ 0.80 (J=7.2 Hz) as a triplet. A doublet at δ 0.90 (J=6.3 Hz) was due to the 21-methyl group. Three singlets of the H₃-18, H₃-19, and H₃-27 methyls appeared at δ 0.68, 0.95, and 1.57, respectively. The ¹³C-nmr (Table 1) spectrum of 3 also indicated the presence of 29 carbon signals in the molecule. The DEPT spectrum exhibited five methyl, eleven methylene, and nine methine signals. The remaining four signals in the broad-band spectrum were attributed to the quaternary carbon atoms. The molecular ion (m/z 444) of **3** was not observed in the eims, but instead a peak at m/z 426, representing the dehydration of **3**, was observed. From the above data, the molecular formula of **3** was deduced to be $C_{29}H_{48}O_3$. Also, by comparison of the ¹H-

Carbon	Compound			
	2	3	5	6
C-1	37.11	28.54	36.76	37.00
C-2	34.27	30.45	31.36	31.34
C-3	200.36	66.98	71.41	71.35
C-4	126.35	35.75	42.20	42.01
C-5	168.36	84.30	148.84	146.21
C-6	73.33	129.00	119.92	123.87
C-7	38.56	136.27	78.49	65.34
C-8	29.73	39.06	37.11	37.51
C-9	53.61	43.82	43.54	42.26
C -10	37.98	38.37	37.42	37.39
C-11	20.99	20.82	20.89	20.70
C-12	39.61	39.89	39.03	39.17
C-13	42.51	43.63	42.34	42.14
C-14	55.88	53.50	49.04	49.41
C-15	24.14	23.80	24.42	24.28
C-16	28.11	28.29	28.11	28.19
C-17	56.06	55.88	55.58	55.71
C-18	12.51	12.49	11.30	11.61
C-19	19.51	15.23	18.20	18.68
C-20	35.52	35.58	35.46	35.47
C-21	18.61	18.54	18.69	18.24 .
C-22	33.63	33.61	33.64	33.64
C-23	29.40	29.47	29.25	29.24
C-24	49.52	49.49	49.52	49.50
C-25	147.53	147.53	147.55	147.54
C-26	111.39	111.39	111.35	111.37
C-27	17.80	17.77	17.83	17.79
C-28	26.52	26.52	26.52	26.51
C-29	12.05	12.05	12.05	12.05

TABLE 1. ¹³C-Nmr Chemical Shifts of Sterols 2, 3, 5, and 6.^{*}

^aChemical shifts were determined at 75.3 MHz in CDCl₃. The values are in ppm downfield from TMS.

nmr spectral data with those of (24R)-24-ethyl-5 α -hydroperoxycholest-6-en-3 β -ol (12), the structure of sterol **3** was established as (24S)-24-ethyl-5 α -hydroperoxycholesta-6,25-dien-3 β -ol. Moreover, the DEPT spectrum of **3** showed that the chemical shifts of C-4, C-9, and C-10 appeared at δ 35.75, 43.82, and 38.37, respectively, which are different from those reported previously (δ 43.8, C-4; 39.4, C-9; 35.7, C-10) for (24*R*)-24-ethyl-5 α -hydroperoxycholest-6-en-3 β -ol (12), and suggest the need for revision of the data reported previously.

The next sterol isolated was identified as (24S)-24-ethyl-7-oxocholesta-5,25-dien-3 β -ol [**4**], obtained previously from *C. decorticatum* (3). The spectral data (¹H-, ¹³C-nmr, ir, and ms) were in full agreement with those reported (3).

Further elution with hexane-EtOAc (4:1) yielded sterol **5**. The eims showed a peak at m/z 426 for $(M-H_2O)^+$. The ¹H-nmr spectrum of **5** showed a broad singlet at δ 7.64 which revealed the presence of a hydroperoxyl group. Two olefinic methylene protons again gave signals at δ 4.64 and 4.73 as broad singlets. An olefinic proton resonance in the ¹H-nmr spectrum appeared as a double doublet at δ 5.72 (J=5.1 and 1.5 Hz) and was ascribed to H-6. The hydroperoxyl and hydroxyl-bearing methines showed signals at δ 4.16 (t, J=5.1 Hz, H-7) and 3.62 (m, H-3), respectively. A triplet at δ 0.80 (J=7.2 Hz) was assigned to the 29-methyl protons. A doublet at δ 0.91 (J=6.3 Hz) was due

to the 21-methyl group. Three singlets of the H₃-18, H₃-19, and H₃-27 methyls appeared at δ 0.65, 0.99, and 1.57, respectively. The ¹³C-nmr spectrum of **5** displayed 29 carbons. The DEPT spectrum showed five methyl, eleven methylene, and nine methine signals. The remaining four signals in the broad-band spectrum were due to the quaternary carbon atoms. The molecular formula of **5** was thus formulated as C₂₉H₄₈O₃. By comparison of its spectral data (¹H- and ¹³C-nmr) with those reported for 24-ethylcholest-5,25-dien-3β-7α-ol [**6**] (3), the structure of **5** was identified as (24*S*)-24-ethyl-7α-hydroperoxycholesta-5,25-dien-3β-ol.

The structure of **5** was further confirmed by transformation to a known compound. Reaction of **5** with LAH converted it into the known (24*S*)-24-ethylcholesta-5,25-dien-3 β ,7 α -diol [**6**] (3). In addition, **6** was isolated from the crude extract of *C. arabicum* by elution with hexane-EtOAc (1:1). The spectral data of **6** (¹³C-nmr data, see Table 1), whether generated by chemical conversion or from natural sources, were in full agreement with reported data (3).

A previous study showed that (24S)-24-ethylcholesta-5,25-dien-3 β ,7 β -diol [7], an epimer of $\mathbf{6}$, could also be isolated from the extract of C. decorticatum (3). We did not detect the presence of 7 in C. arabicum, but we observed that the 7 α -hydroperoxy sterol 5 could be epimerized to the 7 β -hydroperoxy sterol 8 to form an inseparable mixture when it was stored either in solution or in the solid state. When 5 was stored in a refrigerator $(0-10^\circ)$, it slowly rearranged to 8 until the ratio of 5 and 8 reached 3:1 (estimated from integration of the ¹H-nmr spectrum). The ¹H-nmr spectrum of 8 showed a hydroperoxyl proton as a broad singlet at δ 7.53. The H-6 signal of **8** appeared as a broad peak at δ 5.58, and the two singlets of the H₃-18 and H₃-19 methyls appeared at δ 0.68 and 1.04, respectively. By comparison of these data with those of 7 β hydroperoxycholest-5-en-3 β -ol (11), the structure of **8** was identified as (24S)-24-ethyl-7 β -hydroperoxycholesta-5,25-dien-3 β -ol. The inseparable mixture of **5** and **8**(3:1) was subjected to reaction with LiAlH₄ to yield **6** and its 7 β -hydroxyl epimer [**7**] (3) in a ratio also near to 3:1. The above transformation not only further confirmed the structure of 8. but also supported the previous assumption that the epimerization of 7α -hydroperoxy steroids leads to the formation of 7β -hydroperoxyl epimers (11).

We also report here the cytotoxicity of 1 and its oxygenated derivatives 2-6 against various cancer cell lines. The cytotoxicity of these compounds is given in Table 2, which shows that 1 exhibited significant activity against P-388 cells and was the most active against A-549 cells among compounds 1-6. However, 1 was inactive against the growth of KB and HT-29 cells. The oxidized products 2-6 all showed significant activity against the growth of the four indicated cancer cell lines, indicating that oxidation increases the activity of clerosterol [1].

	ED ₅₀ (µg/ml) Cell line					
	P-388	КВ	A- 549	HT-29		
1	1.7	>50	0.3	43.1		
2	0.7	1.3	2.1	0.3		
3	0.5	1.0	1.1	0.9		
4	0.8	1.0	1.2	2.0		
5	0.4	1.0	0.5	1.0		
6	0.2	1.1	0.5	0.6		

TABLE 2. Cytotoxicity of Sterols 1-6.*

^aFor significant activity of pure compounds, an ED₅₀ value of $\leq 4.0 \,\mu g/ml$ is required.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—Mps were determined using a Fisher-Johns melting-point apparatus and are uncorrected. The ir spectra were measured on a Hitachi I-2001 infrared spectrophotometer. ¹H- and ¹³C-nmr spectra were recorded with a VXR-300/5 FT-nmr spectrometer at 300 MHz and 75.3 MHz, respectively, in CDCl₃ using TMS as internal standard. Eims spectra were obtained with a VG Quattro GC/MS spectrometer at 30 or 70 eV. Hrms spectra were recorded on a JMX-HX 110 mass spectrometer. Si gel 60 (Merck, 230–400 mesh) was used for cc. Precoated Si gel plates (Merck, Kieselgel 60 F₂₅₄, 0.20 mm) were used for analytical tlc.

PLANT MATERIAL.—The marine green alga *C. arabicum* was collected along the coast of Penghu, Taiwan. A voucher specimen was deposited in the Department of Marine Resources, National Sun Yat-Sen University.

EXTRACTION AND ISOLATION.—The bodies of the marine green alga were freeze-dried. The dried plant material (830 g) was minced and extracted exhaustively with EtOAc. After removal of solvent *in vacuo*, the oily residue (9.60 g) was triturated with hexane. The hexane layer (6.10 g) was found to exhibit significant cytotoxicity against the P-388 cell line with an ED₅₀ value of 6.8 μ g/ml and against the KB cell line with an ED₅₀ value of 19.9 μ g/ml. Cc of the hexane layer was undertaken using hexane and hexane/EtOAc mixtures of increasing polarity. Finally, the column was washed with pure EtOAc. Sterol **1** was eluted with hexane-EtOAc (5:1), hydroxyenone **2** with hexane-EtOAc (4:1), and finally diol **6** with hexane-EtOAc (1:1).

(24\$)-24-Etbyl-3-oxocholesta-4,25-dien-6β-ol [2].—White powdery solid (1.7 mg); mp 194°; ir (KBr) ν max 3484, 1686, 1648, 892 cm⁻¹; ¹H nmr δ 5.82 (1H, s, H-4), 4.73 (1H, s, H-26), 4.65 (1H, s, H-26), 4.35 (1H, br s, H-6), 1.56 (3H, s, Me-27), 1.38 (3H, s, Me-19), 0.91 (3H, d, J=6.3 Hz, Me-21), 0.80 (3H, t, J=7.2 Hz, Me-29), 0.73 (3H, s, Me-18); ¹³C-nmr data, see Table 1; eims m/z [M]⁺ 426 (13), 408 (5), 343 (27), 313 (9), 285 (10), 267 (9), 227 (5); hrms m/z found 426.3502, calcd 426.3499 for C₂₉H₄₆O₂.

 $(24S)-24-Etbyl-5\alpha-bydroperoxycholesta-6,25-dien-3\beta-ol [3]. White powdery solid (8.4 mg); [\alpha]^{4^{\circ}}D -9.1^{\circ} (c=0.07, CHCl_3); mp 152-153^{\circ}; ir (KBr) \nu max 3436, 3216, 1678, 1644, 890 cm⁻¹; ¹H nmr <math>\delta$ 7.06 (1H, s, OOH), 5.83 (1H, dd, J=1.8 and 9.6 Hz, H-6), 5.60 (1H, dd, J=2.4 and 9.6 Hz, H-7), 4.73 (1H, s, H-26), 4.64 (1H, s, H-26), 4.12 (1H, m, H-3), 1.57 (3H, s, Me-27), 0.95 (3H, s, Me-19), 0.90 (3H, d, J=6.3 Hz, Me-21), 0.80 (3H, t, J=7.2 Hz, Me-29), 0.68 (3H, s, Me-18); ¹³C-nmr data, see Table 1; eims $m/z [M-H_2O]^- 426 (2), 410 (7), 396 (1), 343 (1), 313 (1), 273 (2), 229 (2); hrms <math>m/z$ found 426.3499, calcd 4444. 3605 for $C_{29}H_{46}O_3$.

(24S)-24-Ethyl-7α-hydroperoxycholesta-5.25-dien-3β-ol [5].—White powdery solid (16.3 mg); $[\alpha]^{24}$ D -87.6° (c=0.14, CHCl₃); mp 127–128°; ir (KBr) ν max 3444, 3392, 1678, 1646, 892 cm⁻¹; ¹H nmr δ 7.64 (1H, br s, OOH), 5.72 (1H, dd, J=4.8 and 1.5 Hz, H-6), 4.73 (1H, s, H-26), 4.64 (1H, s, H-26), 4.16 (1H, t, J=5.1 Hz, H-7), 3.62 (1H, m, H-3), 1.57 (3H, s, Me-27), 0.99 (3H, s, Me-19), 0.91 (3H, d, J=6.3 Hz, Me-21), 0.80 (3H, t, J=7.2 Hz, Me-29), 0.65 (3H, s, Me-18); ¹³C-nmr data, see Table 1; eims *m*/z [M-H₂O]⁺ 426 (3), 410 (17), 396 (5), 343 (2), 267 (2), 227 (2); hrms *m*/z found 426.3492, calcd 444.3605 for C₂₉H₄₈O₃, 426.3499 for C₂₉H₄₆O₂.

(24S)-24-Ethylcholesta-5,25-dien-3 β ,7 β -diol [7].—To a stirred solution of the mixture of **5** and **8**(3:1, 11 mg) in dry THF (5 ml) was added excess LiAlH₄ at room temperature under N₂. The stirring was continued at room temperature for 2 h. Thereafter, H₂O (0.1 ml) was added followed by the addition of EtOAc (20 ml). The organic layer was filtered and evaporated. The crude product was separated by cc with the stepwise elution of hexane-EtOAc (2:1 \rightarrow 1:1) to yield the known compound 7 (2.4 mg) as a white powdery solid. Further elution with hexane-EtOAc (1:1) yielded diol **6** (7.5 mg). The spectral data of **6** and **7** were in full agreement with those reported previously (3).

CYTOTOXICITY TESTING.—KB and P-388 cells were kindly provided by Prof. J.M. Pezzuto, University of Illinois at Chicago; A-549 (human lung adenocarcinoma) and HT-29 (human colon adenocarcinoma) were purchased from the American Type Culture Collection. Cytotoxicity tests were carried out according to standard protocols (13) in the following manner.

P-388 cells were cultured in Fisher's medium supplemented with 10% heat-inactivated (56° for 30 min) fetal calf serum (FCS). The KB cells were maintained in Basal Medium Eagle (BME) containing 10% heat-inactivated FCS. A-549 cells were cultured in Eagle's Minimum Essential Medium (EMEM) containing Earle's salts and supplemented with 0.1 mM of nonessential amino acids and 10% heat-inactivated FCS. HT-29 cells were maintained in Roswell Park Memorial Institute (RPMI) 1640 medium containing 10% heat-inactivated FCS. All the cell lines were maintained in an incubator at 37° in humidified air containing 5% CO₂.

The cytotoxic activities of tested compounds or fractions against the P-388, KB, A-549, and HT-29 cancer cell lines were assayed by a modification of the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric method (14). For P-388 cells, 200-µl cultures were established at 1500 cells/well in 96-well tissue culture plates (Falcon). Compounds were dispensed subsequently to the established culture plate at eight concentrations in triplicate. After three days of incubation, P-388 cells were enumerated with MTT.

To measure the cytotoxic activities of purified compounds or crude fractions against KB, A-549, and HT-29 cells, each cell line was initiated at 1,000 cells/well in 96-well microtiter plates. Eight concentrations of test compounds encompassing a 128-fold range were added to each cell line. KB, A-549, and HT-29 cells were enumerated using MTT after exposure to test compounds for 3, 6, and 6 days, respectively. To each well 50 μ l of 1 mg/ml MTT were added, and plates were incubated at 37° for a further 5 h. Formazan crystals were redissolved in DMSO (E. Merck) for 10 min with shaking, and the plate was read immediately on a microtiter plate reader (Titertek Mutiskan, Flow) at a wavelength of 540 nm. The ED₅₀ value was defined as the concentration of test compound resulting in a 50% reduction of absorbance compared to untreated cells in the MTT assay.

ACKNOWLEDGMENTS

This work was supported by a grant from the National Science Council of the Republic of China (NSC-81-0418-B-110-511-BH) awarded to J.-H. Sheu.

LITERATURE CITED

- 1. I. Rubinstein and L.J. Goad, Phytochemistry, 13, 481 (1974).
- 2. V.U. Ahmad, R. Aliya, S. Perveen, and M. Shameel, Phytochemistry, 31, 1429 (1992).
- 3. V.U. Ahmad, R. Aliya, S. Perveen, and M. Shameel, Phytochemistry, 33, 1189 (1993).
- 4. R. Aliya and M. Shameel, Botan. Marina, 36, 371 (1993).
- 5. K.P. Cheng, L. Bang, G. Ourisson, and J.P. Beck, J. Chem. Res. (S), 84 (1979).
- 6. K.P. Cheng, L. Bang, G. Ourisson, and J.P. Beck, J. Chem. Res. (M), 1101 (1979).
- 7. G. Schroeder, M. Rohmer, J.P. Beck, and R. Anton, Phytochemistry, 19, 2213 (1980).
- 8. C.E. Heltzel, A.A.L. Gunatilaka, and D.G.I. Kingston, J. Nat. Prod., 57, 620 (1994).
- 9. W. Sucrow, Chem. Ber., 99, 2765 (1966).
- 10. M.D. Greca, P. Monaco, and L. Previtera, J. Nat. Prod., 53, 1430 (1990).
- 11. J.I. Teng, M.J. Kulig, L.L. Smith, G. Kan, and J.E. ven Lier, J. Org. Chem., 38, 119 (1973).
- 12. M.D. Greca, A. Fiorentino, A. Molinaro, P. Monaco, and L. Previtera, Nat. Prod. Lett., 5, 7 (1994).
- 13. R.I. Geran, N.H. Greenberg, M.M. MacDonald, A.M. Schumacher, and B.J. Abbott, *Cancer Chemother. Rep.*, **3** (3), 1 (1972).
- 14. T. Mosmann, J. Immunol. Meth., 65, 55 (1983).

Received 21 February 1995